Real-Time Target Detection Architecture Based on Reduced Complexity Hyperspectral Processing

نویسندگان

  • Kyoung-Su Park
  • Shung Han Cho
  • Sangjin Hong
  • We-Duke Cho
چکیده

This paper presents a real-time target detection architecture for hyperspectral image processing. The architecture is based on a reduced complexity algorithm for high-throughput applications.We propose an efficient pipelined processing element architecture and a scalable multiple-processing element architecture by exploiting data partitioning. We present a processing unit modeling based on the data reduction algorithm in hyperspectral image processing and propose computing structure, that is, to optimize memory usage and eliminates memory bottleneck. We investigate the interconnection topology for the multipleprocessing element architecture to improve the speed. The proposed architecture is designed and implemented in FPGA to illustrate the relationship between hardware complexity and execution throughput of hyperspectral image processing for target detection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Soft-Input Soft-Output Target Detection Algorithm for Passive Radar

Abstract: This paper proposes a novel scheme for multi-static passive radar processing, based on soft-input soft-output processing and Bayesian sparse estimation. In this scheme, each receiver estimates the probability of target presence based on its received signal and the prior information received from a central processor. The resulting posterior target probabilities are transmitted to the c...

متن کامل

Real-time target detection in hyperspectral images based on spatial-spectral information extraction

Recently, real-time image data processing is a popular research area for hyperspectral remote sensing. In particular, target detection surveillance, which is an important military application of hyperspectral remote sensing, demands real-time or near real-time processing. The massive amount of hyperspectral image data seriously limits the processing speed. In this article, a strategy named spat...

متن کامل

Impact of linear dimensionality reduction methods on the performance of anomaly detection algorithms in hyperspectral images

Anomaly Detection (AD) has recently become an important application of hyperspectral images analysis. The goal of these algorithms is to find the objects in the image scene which are anomalous in comparison to their surrounding background. One way to improve the performance and runtime of these algorithms is to use Dimensionality Reduction (DR) techniques. This paper evaluates the effect of thr...

متن کامل

A New Dictionary Construction Method in Sparse Representation Techniques for Target Detection in Hyperspectral Imagery

Hyperspectral data in Remote Sensing which have been gathered with efficient spectral resolution (about 10 nanometer) contain a plethora of spectral bands (roughly 200 bands). Since precious information about the spectral features of target materials can be extracted from these data, they have been used exclusively in hyperspectral target detection. One of the problem associated with the detect...

متن کامل

Land Cover Subpixel Change Detection using Hyperspectral Images Based on Spectral Unmixing and Post-processing

  The earth is continually being influenced by some actions such as flood, tornado and human artificial activities. This process causes the changes in land cover type. Thus, for optimal management of the use of resources, it is necessary to be aware of these changes. Today’s remote sensing plays key role in geology and environmental monitoring by its high resolution, wide covering and low cost...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • EURASIP J. Adv. Sig. Proc.

دوره 2008  شماره 

صفحات  -

تاریخ انتشار 2008